Source code for equadratures.weight

from equadratures.parameter import Parameter
from equadratures.basis import Basis
from equadratures.poly import Poly, evaluate_model
from scipy import stats
import numpy as np
ORDER_LIMIT = 5000
RECURRENCE_PDF_SAMPLES = 50000
QUADRATURE_ORDER_INCREMENT = 80
[docs]class Weight(object): """ The class offers a template to input bespoke weight (probability density) functions. The resulting weight function can be given to :class:`~equadratures.parameter.Parameter` to create a bespoke analytical or data-driven parameter. Parameters ---------- weight_function : ~collections.abc.Callable,numpy.ndarray A callable function or an array of data representing the weights. support : list, optional Lower and upper bounds of the weight respectively. Values such as ``-inf`` or ``inf`` are not acceptable. pdf : bool, optional If set to ``True``, then the weight_function is assumed to be normalised to integrate to unity. Otherwise, the integration constant is computed and used to normalise weight_function. mean : float, optional User-defined mean for distribution. When provided, the code does not compute the mean of the weight_function over its support. variance : float, optional User-defined variance for distribution. When provided, the code does not compute the variance of the weight_function over its support. Example ------- Analytical weight functions >>> # exp(-x)/sqrt(x) >>> pdf_1 = Weight(lambda x: np.exp(-x)/ np.sqrt(x), [0.00001, -np.log(1e-10)], >>> pdf=False) >>> >>> # A triangular distribution >>> a = 3. >>> b = 6. >>> c = 4. >>> mean = (a + b + c)/3. >>> var = (a**2 + b**2 + c**2 - a*b - a*c - b*c)/18. >>> pdf_2 = Weight(lambda x : 2*(x-a)/((b-a)*(c-a)) if (a <= x < c) >>> else( 2/(b-a) if (x == c) >>> else( 2*(b-x)/((b-a)*(b-c)))), >>> support=[a, b], pdf=True) >>> >>> # Passing to Parameter >>> param = Parameter(distribution='analytical', weight_function=pdf_2, order=2) Data driven weight functions >>> # Constructing a kde based on given data, using Rilverman's rule for bandwidth selection >>> pdf_2 = Weight( stats.gaussian_kde(data, bw_method='silverman'), >>> support=[-3, 3.2]) >>> >>> # Passing to Parameter >>> param = Parameter(distribution='analytical', weight_function=pdf, order=2) """ def __init__(self, weight_function, support=None, pdf=False, mean=None, variance=None): self.weight_function = weight_function self.flag = 'function' tmp = lambda:0 if not isinstance(self.weight_function, type(tmp)): self.weight_function = stats.gaussian_kde(weight_function, bw_method='silverman') self.flag = 'data' self.pdf = pdf if self.flag == 'data' and support is None: support = [np.min(weight_function), np.max(weight_function)] self.support = support self.lower = self.support[0] self.upper = self.support[1] if self.upper <= self.lower: raise(ValueError, 'The lower bound must be less than the upper bound in the support.') if self.lower == -np.inf: raise(ValueError, 'The lower bound cannot be negative infinity.') if self.upper == np.inf: raise(ValueError, 'The upper bound cannot be infinity.') self._verify_probability_density() self.x_range_for_pdf = np.linspace(self.lower, self.upper, RECURRENCE_PDF_SAMPLES) self.mean = mean self.variance = variance self.data = self.get_pdf() if self.mean is None: self._set_mean() if self.variance is None: self._set_variance() def _evaluate_pdf(self, x): x = np.array(x) pdf_values = np.zeros((x.shape[0])) for i in range(0, x.shape[0]): pdf_values[i] = self.weight_function(x[i]) return pdf_values
[docs] def get_pdf(self, points=None): """ Returns the pdf associated with the distribution. Parameters ---------- points : numpy.ndarray, optional Array of points to evaluate pdf at. Returns ------- numpy.ndarray Array with shape ( len(points),1 ) containing the probability distribution. """ if points is None: return self._evaluate_pdf(self.x_range_for_pdf) * self.integration_constant else: return self._evaluate_pdf(points) * self.integration_constant
def _verify_probability_density(self): integral, _ = self._iterative_quadrature_computation(self.weight_function) if (np.abs(integral - 1.0) >= 1e-2) or (self.pdf is False): self.integration_constant = 1.0/integral elif (np.abs(integral - 1.0) < 1e-2) or (self.pdf is True): self.integration_constant = 1.0 def _get_quadrature_points_and_weights(self, order): param = Parameter(distribution='uniform',lower=self.lower, upper=self.upper,order=order) basis = Basis('univariate') poly = Poly(method='numerical-integration',parameters=param,basis=basis) points, weights = poly.get_points_and_weights() return points, weights * (self.upper - self.lower) def _set_mean(self): # Modified integrand for estimating the mean mean_integrand = lambda x: x * self.weight_function(x) * self.integration_constant self.mean, self._mean_quadrature_order = self._iterative_quadrature_computation(mean_integrand) def _iterative_quadrature_computation(self, integrand, quadrature_order_output=True): # Keep increasing the order till we reach ORDER_LIMIT quadrature_error = 500.0 quadrature_order = 0 integral_before = 10.0 while quadrature_error >= 1e-6: quadrature_order += QUADRATURE_ORDER_INCREMENT pts, wts = self._get_quadrature_points_and_weights(quadrature_order) integral = float(np.dot(wts, evaluate_model(pts, integrand))) quadrature_error = np.abs(integral - integral_before) integral_before = integral if quadrature_order >= ORDER_LIMIT: raise(RuntimeError, 'Even with '+str(ORDER_LIMIT+1)+' points, an error in the mean of '+str(1e-4)+'cannot be obtained.') if quadrature_order_output is True: return integral, quadrature_order else: return integral def _set_variance(self): # Modified integrand for estimating the mean variance_integrand = lambda x: (x - self.mean)**2 * self.weight_function(x) * self.integration_constant self.variance, self._variance_quadrature_order = self._iterative_quadrature_computation(variance_integrand)