Scalers#
Classes to scale data.
Some of these classes are called internally by other modules, but they can also be used independently as a pre-processing stage.
Scalers can fit to one set of data, and used to transform other data sets with the same number of dimensions.
Examples
- Fitting scaler implicitly during transform
>>> # Define some 1D sample data >>> X = np.random.RandomState(0).normal(2,0.5,200) >>> (X.mean(),X.std()) >>> (2.0354552465705806, 0.5107113843479977) >>> >>> # Scale to zero mean and unit variance >>> X = eq.scalers.scaler_meanvar().transform(X) >>> (X.mean(),X.std()) >>> (2.886579864025407e-17, 1.0)
- Using the same scaling to transform train and test data
>>> # Define some 5D example data >>> X = np.random.RandomState(0).uniform(-10,10,size=(50,5)) >>> y = X[:,0]**2 - X[:,4] >>> # Split into train/test >>> X_train, X_test,y_train,y_test = eq.datasets.train_test_split(X,y,train=0.7,random_seed=0) >>> (X_train.min(),X_train.max()) >>> (-9.906090476149059, 9.767476761184525) >>> >>> # Define a scaler and fit to training split >>> scaler = eq.scalers.scaler_minmax() >>> scaler.fit(X_train) >>> >>> # Transform train and test data with same scaler >>> X_train = scaler.transform(X_train) >>> X_test = scaler.transform(X_test) >>> (X_train.min(),X_train.max()) >>> (-1.0, 1.0) >>> >>> # Finally, e.g. of transforming data back again >>> X_train = scaler.untransform(X_train) >>> (X_train.min(),X_train.max()) >>> (-9.906090476149059, 9.767476761184525)
- class equadratures.scalers.scaler_custom(offset, div)[source]#
Scale the data by the provided offset and divisor.
- Parameters
offset (float, numpy.ndarray) – Offset to subtract from data. Either a float, or array with shape (number_of_samples, number_of_dimensions).
div (float, numpy.ndarray) – Divisor to divide data with. Either a float, or array with shape (number_of_samples, number_of_dimensions).
- transform(X)[source]#
Transforms data.
- Parameters
X (numpy.ndarray) – Array with shape (number_of_samples, number_of_dimensions) containing data to transform.
- Returns
Array with shape (number_of_samples, number_of_dimensions) containing transformed data.
- Return type
- untransform(X)[source]#
Untransforms data.
- Parameters
X (numpy.ndarray) – Array with shape (number_of_samples, number_of_dimensions) containing data to untransform.
- Returns
Array with shape (number_of_samples, number_of_dimensions) containing untransformed data.
- Return type
- class equadratures.scalers.scaler_meanvar[source]#
Scale the data to have a mean of 0 and variance of 1.
- fit(X)[source]#
Fit scaler to data.
- Parameters
X (numpy.ndarray) – Array with shape (number_of_samples, number_of_dimensions) containing data to fit scaler to.
- transform(X)[source]#
Transforms data. Calls
fit()
fit internally if scaler not already fitted.- Parameters
X (numpy.ndarray) – Array with shape (number_of_samples, number_of_dimensions) containing data to transform.
- Returns
Array with shape (number_of_samples, number_of_dimensions) containing transformed data.
- Return type
- untransform(X)[source]#
Untransforms data.
- Parameters
X (numpy.ndarray) – Array with shape (number_of_samples, number_of_dimensions) containing data to untransform.
- Returns
Array with shape (number_of_samples, number_of_dimensions) containing untransformed data.
- Return type
- Raises
Exception – scaler has not been fitted
- class equadratures.scalers.scaler_minmax[source]#
Scale the data to have a min/max of -1 to 1.
- fit(X)[source]#
Fit scaler to data.
- Parameters
X (numpy.ndarray) – Array with shape (number_of_samples, number_of_dimensions) containing data to fit scaler to.
- transform(X)[source]#
Transforms data. Calls
fit()
fit internally if scaler not already fitted.- Parameters
X (numpy.ndarray) – Array with shape (number_of_samples, number_of_dimensions) containing data to transform.
- Returns
Array with shape (number_of_samples, number_of_dimensions) containing transformed data.
- Return type
- untransform(X)[source]#
Untransforms data.
- Parameters
X (numpy.ndarray) – Array with shape (number_of_samples, number_of_dimensions) containing data to untransform.
- Returns
Array with shape (number_of_samples, number_of_dimensions) containing untransformed data.
- Return type
- Raises
Exception – scaler has not been fitted