Parameter¶
Definition of a univariate parameter.
- class equadratures.parameter.Parameter(order=1, distribution='Uniform', endpoints=None, shape_parameter_A=None, shape_parameter_B=None, variable='parameter', lower=None, upper=None, weight_function=None)[source]¶
- This class defines a univariate parameter. - Parameters:
- lower (float, optional) – Lower bound for the parameter. 
- upper (float, optional) – Upper bound for the parameter. 
- order (int, optional) – Order of the parameter. 
- param_type (str, optional) – The type of distribution that characterizes the parameter (see [1, 2]). Options include chebyshev (arcsine), gaussian, truncated-gaussian, beta, cauchy, exponential, uniform, triangular, gamma, weibull, rayleigh, pareto, lognormal, students-t, logistic, gumbel, chi and chi-squared. If no string is provided, a - uniformdistribution is assumed. Data-driven and custom analytical parameters can also be constructed by setting this option to- dataand- analyticaland providing a weight_function (see examples).
- shape_parameter_A (float, optional) – Most of the aforementioned distributions are characterized by two shape parameters. For instance, in the case of a - gaussian(or- truncated-gaussian), this represents the mean. In the case of a beta distribution this represents the alpha value. For a- uniformdistribution this input is not required.
- shape_parameter_B (float, optional) – This is the second shape parameter that characterizes the distribution selected. In the case of a - gaussianor- truncated-gaussian, this is the variance.
- data (numpy.ndarray, optional) – A data-set with shape (number_of_data_points, 2), where the first column comprises of parameter values, while the second column corresponds to the data observations. This input should only be used with the - Analyticaldistribution.
- endpoints (str, optional) – If set to - both, then the quadrature points and weights will have end-points, based on Gauss-Lobatto quadrature rules. If set to- upperor- lowera Gauss-Radau rule is used to compute one end-point at either the upper or lower bound.
- weight_function (Weight, optional) – An instance of Weight, which contains a bespoke analytical or data-driven weight (probability density) function. 
 
 - Examples - A uniform parameter
- >>> param = eq.Parameter(distribution='uniform', lower=-2, upper=2., order=3) 
- A beta parameter
- >>> param = eq.Parameter(distribution='beta', lower=-2., upper=15., order=4, >>> shape_parameter_A=3.2, shape_parameter_B=1.7) 
- A data-driven parameter
- >>> pdf = eq.Weight( stats.gaussian_kde(data, bw_method='silverman'), >>> support=[-3, 3.2]) >>> param = eq.Parameter(distribution='analytical', >>> weight_function=pdf, order=2) 
 - References - Xiu, D., Karniadakis, G. E., (2002) The Wiener-Askey Polynomial Chaos for Stochastic Differential Equations. SIAM Journal on Scientific Computing, 24(2), Paper 
- Gautschi, W., (1985) Orthogonal Polynomials-Constructive Theory and Applications. Journal of Computational and Applied Mathematics 12 (1985), pp. 61-76. Paper 
 - get_cdf(points=None)[source]¶
- Computes the cumulative density function associated with the Parameter. - Parameters:
- points (numpy.ndarray, optional) – Values of the parameter at which the CDF must be evaluated. 
- Returns:
- numpy.ndarray – If - points!=None. ndarray containing the cumulative density function evaluated at the points in- points.
- tuple – If - points=None. A tuple (x, cdf), where cdf is the cumulative density function evaluated at the points in x.
 
 
 - get_description()[source]¶
- Provides a description of the Parameter. - Returns:
- A description of the parameter. 
- Return type:
 
 - get_icdf(cdf_values)[source]¶
- Computes the inverse cumulative density function associated with the Parameter. - Parameters:
- cdf_values (numpy.ndarray) – Values of the cumulative density function for which its inverse needs to be computed. 
- Returns:
- The inverse cumulative density function. 
- Return type:
 
 - get_jacobi_eigenvectors(order=None)[source]¶
- Computes the eigenvectors of the Jacobi matrix. - Parameters:
- order (int) – Order of the recurrence coefficients. 
- Returns:
- Array of eigenvectors. 
- Return type:
 
 - get_jacobi_matrix(order=None, ab=None)[source]¶
- Computes the Jacobi matrix—a tridiagonal matrix of the recurrence coefficients. - Parameters:
- order (int) – Order of the recurrence coefficients. 
- Returns:
- 2D array containing the Jacobi matrix. 
- Return type:
 
 - get_pdf(points=None)[source]¶
- Computes the probability density function associated with the Parameter. - Parameters:
- points (numpy.ndarray, optional) – Values of the parameter at which the PDF must be evaluated. 
- Returns:
- numpy.ndarray – If - points!=None. ndarray containing the probability density function evaluated at the points in- points.
- tuple – If - points=None. A tuple (x, pdf), where pdf is the probability density function evaluated at the points in x.
 
 
 - get_recurrence_coefficients(order=None)[source]¶
- Generates the recurrence coefficients. - Parameters:
- order (int, optional) – Order of the recurrence coefficients. 
- Returns:
- Array of recurrence coefficients. 
- Return type:
 
 - get_samples(number_of_samples_required)[source]¶
- Generates samples from the distribution associated with the Parameter. - Parameters:
- number_of_samples_required (int) – Number of samples that are required. 
- Returns:
- The generated samples. 
- Return type:
 
 - plot_cdf(ax=None, show=True, lim_range=True)[source]¶
- Plots the cumulative density function for a Parameter. See - plot_cdf()for full description.
 




